
AIAA JOURNAL

Vol. 40, No. 4, April 2002

Algorithms and Application of Sparse Matrix Assembly
and Equation Solvers for Aeroacoustics

W. R. Watson¤

NASA Langley Research Center, Hampton, Virginia 23681
D. T. Nguyen†

Old Dominion University, Norfolk, Virginia 23529
C. J. Reddy‡

EM, Inc., Hampton, Virginia 23666
V. N. Vatsa§

NASA Langley Research Center, Hampton, Virginia 23681
and

W. H. Tang¶

Hong Kong University of Science and Technology, Kowloon, Hong Kong, People’s Republic of China

An algorithm for symmetric sparse equation solutions on an unstructured grid is described. Ef� cient, sequen-
tial sparse algorithms for degree-of-freedom reordering, supernodes, symbolic/numerical factorization, and for-
ward/backward solutionphases are reviewed. Three sparse algorithmsfor the generation and assembly of symmet-
ric systems of matrix equations are presented. The accuracy and numerical performance of the sequential version
of the sparse algorithms are evaluated over the frequency range of interest in a three-dimensional aeroacoustics
application. Results show that the solver solutions are accurate using a discretization of 12 points per wavelength.
Results also show that the � rst assembly algorithm is impractical for high-frequency noise calculations. The sec-
ond and third assembly algorithms have nearly equal performance at low values of source frequencies, but at
higher values of source frequencies the third algorithm saves CPU time and RAM. The CPU time and the RAM
required by the second and third assembly algorithms are two orders of magnitude smaller than that required
by the sparse equation solver. A sequential version of these sparse algorithms can, therefore, be conveniently in-
corporated into a substructuring (or domain decomposition) formulation to achieve parallel computation, where
different substructures are handled by different parallel processors.

Nomenclature
[A], fFg = global stiffness matrix and load vector

without source effects
[NA], f NFg = global stiffness matrix and loads vector

with source effects
[A], [B], [C], [F] = local element matrices for a rigid wall duct
fADg, fANg, fag = one-dimensionalarrays containing sparse

matrix coef� cients
[A.e/], fF .e/g = element stiffness matrix and loads vector
AIJ , A.e/

IJ , f I = complex matrix coef� cients
[B], [P] = contributions to the element stiffness

matrix due to the exit plane and
interior elements

Received 16February2001;revisionreceived 1September 2001;accepted
for publication 13 September 2001. Copyright c° 2001 by the American
Institute of Aeronautics and Astronautics, Inc. No copyright is asserted in the
United States under Title 17, U.S. Code. The U.S. Government has a royalty-
free license to exercise all rights under the copyright claimed herein for
Governmental purposes.All other rightsare reserved by the copyrightowner.
Copies of this paper may be made for personal or internal use, on condition
that the copier pay the $10.00 per-copy fee to the Copyright Clearance
Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include the code
0001-1452/02 $10.00 in correspondence with the CCC.

¤Senior Research Scientist, Computational Modeling and Simulation
Branch, Aerodynamics, Aerothermodynamics, and Acoustics Competency,
Mail Stop 128; w.r.watson@larc.nasa.gov. Senior Member AIAA.

†Professor, Civil Engineering, and Head of Multidisciplinary Parallel-
Vector Computation Center, 135 Kauf Building; dnguyen@lions.odu.edu.

‡President and Chief Technical Of� cer, 24 Research Drive; cjreddy@
appliedem.com.

§Senior Research Scientist, Computational Modeling and Simulation
Branch, Aerodynamics, Aerothermodynamics, and Acoustics Competency,
Mail Stop 128; v.n.vatsa@larc.nasa.gov. Senior Member AIAA.

¶Professor and Chairperson,Civil and StructuralEngineeringDepartment.

[D], [L] = diagonal and unit lower triangular matrices
d I = value of � eld variable at local node I
[E] = element degree-of-freedommatrix
fENg = discrete error vector
Er , Nm = error and three-dimensionalbasis functions
F = � ll in resulting from matrix factorization
fFgI = I th component of fFg
fF.N /g = fFg vector of length N
f , k = source frequency and free

space wave number
H , L , W = height, length, and width of

three-dimensionalduct
[HA], fhag = matrix of pointers for sparse assembly
[HA]IJ = coef� cient of the I th row and J th column

of [HA]
[HA.N ; M/] = [HA] an N £ M matrix
h, l, w = height, length, and width of

three-dimensional� nite element
fIAg = array containing the number of nonzeroes

per row
fICg, fIEg, fIETg = arrays of starting locations of nonzero

coef� cients
fIPg, fIVg = permutation and inverse permutation

vectors
fIRg, fJCg = array of row and column indexes for

nonzero matrix coef� cients
i =

p
¡1

fJAg = array containing the column numbers
of the nonzero off-diagonal
matrix coef� cients

fJEg = array of element connectivities
fJETg = array of element numbers connected

to each degree of freedom

661

662 WATSON ET AL.

M = number of nonzero coef� cients in a sparse
matrix, N C N1

ME = maximum number of elements connected
to a degree of freedom

fMMg = array of element numbers connected to a
degree of freedom

fMPg = array containing the number of elements
connected to a degree of freedom

fMSg = master degree-of-freedomarray
MZ = maximum number of nonzero coef� cients

per row
N = number of unknowns in the � nite element

discretization
NE, NP = number of � nite elements and degrees of

freedom per element
NF = number of � ll ins during factorizationof a

matrix
NX, NY , NZ = total number of transverse, spanwise, and

axial nodes
N1 = number of nonzero, off-diagonal

coef� cients before factorization
N2 = number of nonzero, off-diagonal

coef� cients after factorization
p = acoustic pressure � eld
pm , ps = acoustic pressure at local node m and

source pressure
Relerr, u0 = relative error norm and uniform � ow speed
S, V = surface and volume of a � nite element
X = nonzero value that was modi� ed during

matrix factorization
x , y, z = Cartesian coordinates
x I , yJ , zK = transverse, spanwise, and axial locations

of grid lines
¯exit = dimensionless exit admittance
@p=@n = derivative of the acoustic pressure

normal to a surface
³ , ³exit = dimensionless wall and exit impedance
f8g = global vector of unknowns
f8eg, f8.I ;J;K /g = local vectors of unknowns
f8FFg, f8BBg = intermediate vectors for forward and

backward substitution
8 I , F .e/

I = vector components
frg, r2 = gradient vector and Laplace operator
² = vector dot product

Subscripts

exit, s = exit and source plane index
F , R = factored and reordered matrix
FF, BB = forward and backward substitution
I , J = row and column index of a matrix

Superscripts

e = truss element number
I , J , K = grid line locator for three-dimensionalduct
T = matrix or vector transpose
¤ = complex conjugate

I. Introduction

T HREE-DIMENSIONAL aeroacoustics codes that can accu-
rately predict the noise radiated from commercial aircraft are

needed.1 Currently,noisepredictioncodes require the use of a linear
equationsolverbefore radiatednoise can be predicted.An optimizer
must then run the noise predictive code on a digital computer hun-
dreds of times to achieve an aircraft design with a minimal noise
radiation signature.

Currently, industry and government aircraft noise predictive
codes are either two-dimensional or treat only axisymmetric noise
signatures.1 When the volumes are three-dimensional,the currently
used equation solvers require an excessive amount of CPU time
and RAM for their assembly and solution.This excessiveCPU time
and computer storage restricts aircraft noise prediction codes to

low-frequency sound sources in two-dimensional or axisymmetric
environments.

Sparse equation solving technologies2¡14 have been developed
and are well documented for several engineering applications, and
the computational advantage of sparse solver technology over the
more conventional technologies (such as band or skyline solvers)
has been demonstrated. In addition, for practical engineeringappli-
cations, system matrix equations must be developed for an unstruc-
tured grid to which boundary conditions are often dif� cult to apply.
The � nite element method is the simplest for generating the system
matrix on an unstructuredgrid.

Only recently have sparse solver technologies been applied to
aeroacoustics.1;15 In Ref. 1, several direct and iterative equation
solvers were evaluated to determine their applicability to two-
dimensional duct aeroacousticscomputationswith the direct sparse
solver emerging as the most promising. In Ref. 15, sparse solver
equation solving methodology was extended to three-dimensional
acoustically lined ducts. However, the work presented in Ref. 15
adopted the assembly strategy that is currently available in the lit-
erature for assembling system sparse matrix equations.This simple
but inef� cient assembly strategy precludes the use of sparse solvers
for three-dimensionalaeroacoustic computations.15

Most, if not all, major codes for analysis and optimal design al-
low users to select either iterative or direct equation solvers. For
nacelle aeroacoustics computations, iterative solvers are not as ro-
bust as direct solvers because the nacelle equation system is poorly
conditioned.1 Iterativesolutionmethods,whenappliedto systemsof
poorlyconditionedequations,have the disadvantagethat they do not
converge, or they converge very slowly. A further disadvantage of
applyingiterativesolutionmethodsto solve thenacelleequationsys-
tem is that the nacelleequationsystem often containsmultiple right-
hand sides. Iterativemethodsarenot as ef� cientas directmethodson
equation systems with multiple right-hand sides because the equa-
tion system must be reformed and resolved for each right-handside.

The long-termobjectiveof this research is to acquire the capabil-
ity to design quiet aircraft in a fully three-dimensionalaeroacoustic
environment using direct sparse solver technologies and the � nite
element methodogy. The current paper has two objectives.The � rst
objective is to bridge the gap between the aeroacousticians (who
may not have a comprehensive knowledge of sparse assembly and
equation solver technologies) and members of the sparse research
community (who may not have comprehensive knowledge of � -
nite element analysis and aeroacoustics). The second objective is to
presentef� cient algorithms for assemblingsparse matrix equations.

Section II describes three sparse assembly algorithms for gener-
ating systems of sparse linear equations. Section III describes the
template that is used to develop a complete, unstructured grid, � -
nite element code, that is, equation reordering, symbolic/numerical
factorization,supernodes/loop unrolling,and forward/backward so-
lution phases. Section IV presents a detailed formulation of the el-
ement stiffness matrices that will be assembled using the sparse as-
sembly algorithmsto form the systemmatrix for a three-dimensional
duct aeroacoustics application. Finally, Sec. V discusses the accu-
racy and numerical performance of the developed algorithms over
the frequencyrangeof interestfor a three-dimensionalaeroacoustics
application. Note that although the sparse algorithms presented as-
sume that the system matix equation is symmetric, these algorithms
are easily extendible to nonsymmetric systems of equations. The
algorithms can also be conveniently incorporated into a substruc-
turing (or domain decomposition) formulation to take advantageof
parallel computation to further reduce CPU time and RAM.

II. Sparse Assembly Algorithms
for Symmetric Systems

Figure 1 is a two-dimensional truss (or rod) structure assembled
from individual truss elements labeled (1), (2), : : : , (13) that are
interconnectedat eight nodes labeled 1, 2, : : : , 8. An element .e/ of
the structure is assumed to possess only two points of connection,
and the external loads are assumed to be applied at the nodes of the
truss elements. Only a single degreeof freedom (DOF) at each node
is assumed. To further simplify discussions, it is assumed that, by a
separate calculation, the element stiffness matrix and external load
vector for the truss element .e/ are known and expressed as

WATSON ET AL. 663

£
A.e/.2; 2/

¤
D

"
A.e/

11 A.e/

12

A.e/

21 A.e/

22

#
;

©
F .e/.2/

ª
D

(
F .e/

1

F .e/

2

)
(1)

Under the assumption of Eq. (1), the 13 truss elements (Fig. 1)
may be assembled using the rules of � nite element assembly16 to
obtain the system matrix equation

[A]f8g D fFg (2)

[A.N ; N /] D
e D 13X

e D 1

£
A.e/.2; 2/

¤

D

2

66666666666666664

A11 A.4/

12 0 A.3/

21 A.5/

21 0 A.1/

21 0

A.4/

21 A22 A.7/

12 0 A.8/

21 0 0 0

0 A.7/

21 A33 0 A.9/

21 A.11/

21 0 A.12/

21

A.3/

12 0 0 A44 A.6/

12 0 A.2/

21 0

A.5/

21 A.8/

12 A.9/

12 A.6/

21 A55 A.10/

12 0 0

0 0 A.11/

12 0 A.10/

21 A66 0 A.13/

12

A.1/

12 0 0 A.2/

12 0 0 A77 0

0 0 A.22/

12 0 0 A.13/

21 0 A88

3

77777777777777775

(3)

A11 D A.1/

22 C A.3/

22 C A.4/

11 C A.5/

22 ; A22 D A.4/

22 C A.7/

11 C A.8/

22

A33 D A.7/

22 C A.9/

22 C A.11/

22 C A.12/

22 ; A44 D A.2/

22 C A.3/

11 C A.6/

11

A55 D A.5/

22 C A.6/

22 C A.8/

11 C A.9/

11 C A.10/

11

A66 D A.6/

22 C A.11/

11 C A.13/

41 ; A77 D A.1/

11 C A.2/

11

A88 D A.12/

22 C A.13/

22 (4)

f8.N /g D

8
>>>>>>>>>>><

>>>>>>>>>>>:

81

82

83

84

85

86

87

88

9
>>>>>>>>>>>=

>>>>>>>>>>>;

fF.N /g D

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

F .1/

2 C F .3/

2 C F .4/

1 C F .5/

2

F .4/

2 C F .7/

1 C F .8/

2

F .7/

2 C F .9/

2 C F .11/

2 C F .12/

1

F .2/

2 C F .3/

1 C F .1/

6

F .5/

2 C F .6/

2 C F .8/

1 C F .9/

1 C F .10/

1

F .6/

2 C F .11/

1 C F .13/

1

F .1/

1 C F .3/

2 C F .2/

1

F .12/

2 C F .13/

2

9
>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>;

(5)

Although only a single DOF (8I) is assumed at node I , the dis-
cussionto follow is easily extended to q DOF per node by extending
the coef� cients in [A], that is, A.e/

IJ , to q £ q submatrices.The rules
of matrix algebra would then be applied to each q £ q submatrix as
if it were a scalar.

A. Sparse Data Formats for the System Matrix
For the sake of brevity, in the discussions to follow it will be

assumed that the element stiffness matrix is symmetric so that

Fig. 1 Two-dimensional truss sample problem.

£
A.e/

¤
JI

D
£
A.e/

¤
IJ

(6)

Under the assumptions of Eq. (6), the system matrix [A] is also
symmetric and can be written in the form

[A.N ; N /]

D

2

66666666666666664

A11 A.4/

12 0 A.3/

12 A.5/

12 0 A.1/

12 0

A.4/

12 A22 A.7/

12 0 A.8/

12 0 0 0

0 A.7/

12 A33 0 A.9/

12 A.11/

12 0 A.12/

12

A.3/

12 0 0 A44 A.6/

12 0 A.2/

12 0

A.5/

12 A.8/

12 A.9/

12 A.6/

12 A55 A.10/

12 0 0

0 0 A.11/

12 0 A.10/

12 A66 0 A.13/

12

A.1/

12 0 0 A.2/

12 0 0 A77 0

0 0 A.12/

12 0 0 A.13/

12 0 A88

3

77777777777777775

(7)

The sparse descriptionsof any symmetric system matrix [A] [see
Eq. (7)] is fully described by the four one-dimensionalvectors

fIA.N /g D f4; 2; 3; 2; 1; 1; 0; 0gT

fJA.N 1/g D f2; 4; 5; 7; 3; 5; 5; 6; 8; 5; 7; 6; 8gT (8)

fAD.N /g D fA11; A22; A33; A44; A55; A66; A77; A88gT (9)

fAN.N 1/g D
©

A.4/

12 ; A.3/

12 ; A.5/

12 ; A.1/

12 ; A.7/

12 ; A.8/

12 ; A.9/

12 ;

A.11/

12 ; A.12/

12 ; A.6/

12 ; A.2/

12 ; A.10/

12 ; A.13/

12

ªT
(10)

B. Application of Boundary Conditions
In most engineering applications, the � eld variable at several

boundarynodesmay requireconstraintsto satisfya Dirichletbound-
ary condition of the form

f8gI D dI (11)

where dI is the speci� ed value of the � eld variable at node I .
Dirichlet boundary conditions may be applied at the element or
system level. The impact of applying Dirichlet boundary conditions
on the system matrix equation is identical whether applied at the
element or system level. We will show the relatively easy process
of applying Dirichlet boundary conditions at the element level and
their impact on the system matrix equation [Eq. (2)].

The process for inserting the Dirichlet boundary condition,
f8gI D d I , is as follows:

1) The column of [A.e/] corresponding to the I th DOF is multi-
plied by dI , and the result is subtracted from fF .e/g.

664 WATSON ET AL.

2) The column corresponding to the I th DOF in [A.e/] is made
zero.

3) The row corresponding to the I th DOF in [A.e/] is made zero.
4) The modi� ed element matrix and the modi� ed element load

vector are assembled.
5) [A]II is made equal to unity, and fF gI is made equal to d I .
Thus, applying Dirichlet boundary conditions to the system ma-

trix equation modi� es Eq. (2) to

[NA]f8g D f NF g (12)

The numerical values of the coef� cients in the modi� ed system
matrix [NA] remain unchanged from those in [A], except for a few
that are made zero during the application of the Dirichlet boundary
conditions.Therefore,we will illustrateapplicationof the assembly
algorithms to the nonzero pattern of [A].

C. Sparse Assembly Algorithms
Three symmetric sparse assembly algorithms will be explained

in this section. The purpose of each assembly algorithm is to gen-
erate the system loads vector f NF g and the four vectors de� ned by
Eqs. (8–10), which correspond to [NA]. The assembly algorithms
are discussed starting with the simplest and proceeding to the most
complex.

1. Algorithm 1
The main ideas of this algorithm can be summarized by the fol-

lowing computational tasks:
1) Find how many and which elements are connected to each

DOF.
a) Input data for N , NE, NP, and the elements connectivity(see

Fig. 1).
b) Compute the numberof elementsassociatedwith each DOF,

and store this information into the one-dimensional integer vector
fMP.N /g.

c) Find the element numbers associated with each DOF, and
store this information into the two-dimensional integer matrix
[MM.N ; ME/].

2) Retrieve the stiffness matrix attached to each DOF, perform
sparse matrix assembly one row at a time, and extract the four one-
dimensional vectors required for the sparse equation solver.

2. Algorithm 2
The nonzero patterns of the symmetrical matrix [A] [see Eq. (7)]

for the two-dimensionaltruss exampleproblem(Fig. 1) can be com-
pletely described by the two one-dimensional integer vectors

fIR.M/g D f7; 1; 1; 4; 4; 1; 1; 2; 1; 5; 4; 2; 3; 2; 3; 5; 6; 3; 3; 8; 6gT

(13)

fJC.M/g D f7; 7; 1; 7; 4; 4; 2; 2; 5; 5; 5; 3; 3; 5; 5; 6; 6; 6; 8; 8; 8gT

(14)

and the following integer matrix:

[HA.N ; MZ/] D

2

666666666664

2 3 6 7 9

8 12 14 0 0

13 15 18 19 0

4 5 11 0 0

10 16 0 0 0

17 21 0 0 0

1 0 0 0 0

20 0 0 0 0

3

777777777775

(15)

The two one-dimensional integer vectors in Eqs. (13) and (14) are
constructedby cycling through each element .e/ in increasingorder
and then determining the row and column index of each nonzero
coef� cient from the connectivity array for each element (Fig. 1).
Note that the matrix [HA] contains locations (or pointers) that are
used to refer to vectors fIRg and fJCg. For example, the values
of [HA]41 D 4, [HA]42 D 5, and [HA]43 D 11 indicate that row 4 of

matrix [A] will have these nonzero terms. The exact locations (row
and column numbers) of those three nonzero terms in [A] can be
referred to as

fIRg4 D 4; fJCg4 D 7; fIRg5 D 4

fJCg5 D 4; fIRg11 D 4; fJCg11 D 5 (16)

Thus, the three nonzero terms of the fourth row of [A] are located at
row 4, column7; row 4, column 4; and row 4, column5, respectively
[see Eq. (7)].

The integer matrix [HA] and system matrix [A] can be alterna-
tively stored as one-dimensionalvectors:

fha.M/g D f2; 3; 6; 7; 9; 8; 12; 14; 13; 15; 18; 19;

4; 5; 11; 10; 16; 17; 21; 1; 20gT (17)

fa.M/g D
©

A.4/

12 ; A.3/

12 ; A22; A.7/

12 ; A33; A.8/

12 ; A.12/

12 ; A.6/

12 ; A44; A.2/

12 ;

A66; A.13/

12 ; A.5/

12 ; A.1/

12 ; A.11/

12 ; A.9/

12 ; A55; A.10/

12 ; A88; A11; A77

ªT

(18)

The main ideas of algorithm 2 can be summarized by the following
computational tasks:

1) After initializingfhag to a zero vector, process all elements (in
ascending order) to obtain the integer vectors fIRg and fJCg while
assembling [A] into fag.

2) Separate the diagonal and nonzero off-diagonal terms of [A]
from fag and store this information in fADg and fANg. Separate the
diagonal and off-diagonalterms in fIRg and fJCg, and compute fJAg
and fIAg.

3. Algorithm 3
The nonzero patterns of the symmetrical system matrix [A] can

be completelydescribedby fJAg and the followingone-dimensional
integer vector:

fIC.N C 1/g D f1; 5; 7; 10; 12; 13; 14; 14; 14gT (19)

where

fIAgI D fICgI C 1 ¡ fICgI (20)

and the variable N1 can be conveniently computed as

N1 D fICgN C 1 ¡ fICg1 (21)

The element connectivity information for the two-dimensional
truss sample problem (Fig. 1) is fully described by the element-
DOF matrix

[E .NE; N /] D

2

66666666666666666666664

1 0 0 0 0 0 1 0

0 0 0 1 0 0 1 0

1 0 0 1 0 0 0 0

1 1 0 0 0 0 0 0

1 0 0 0 1 0 0 0

0 0 0 1 1 0 0 0

0 1 1 0 0 0 0 0

0 1 0 0 1 0 0 0

0 0 1 0 1 0 0 0

0 0 0 0 1 1 0 0

0 0 1 0 0 1 0 0

0 0 1 0 0 0 0 1

0 0 0 0 0 1 0 1

3

77777777777777777777775

(22)

Each rowof [E] containsexactlytwo nonzerosbecauseeachelement
has two pointsofconnection,or nodes,to the structure.Thus, [E]IJ is
nonzeroonly if node J is a node for element I . For example, the � rst
row of [E] containsa unit value only in columns 1 and 7, indicating
that the � rst element of the truss is connected to nodes 1 and 7 only

WATSON ET AL. 665

(Fig. 1). The concept of an element-DOF matrix is easily extended
to q DOF per node by extending each of the unity coef� cients in
[E] to a q £ q identity matrix.

To minimize the RAM, it is convenient to describe the element-
DOF matrix [E] by the two one-dimensionalvectors

fIE.NE C 1/g D f1; 3; 5; 7; 9; 11; 13; 15; 17; 19; 21; 23; 25; 27gT

(23)

fJE.NE £ NP/g D f7; 1; 7; 4; 4; 1; 1; 2; 1; 5;

4; 5; 2; 3; 5; 2; 5; 3; 5; 6; 6; 3; 3; 8; 6; 8gT (24)

and the transpose of the element-DOF matrix ([E]T) by the follow-
ing two one-dimensionalvectors:

fIET.N C 1/g D f1; 5; 8; 12; 15; 20; 23; 25; 27gT (25)

fJET.NE £ NP/g D f1; 3; 4; 5; 4; 7; 8; 7; 9; 11; 12; 2; 3;

6; 5; 6; 8; 9; 10; 10; 11; 13; 1; 2; 12; 13gT (26)

The main ideasof algorithm3canbe summarizedby the following
computational tasks:

1) Assume that fIEg, fJEg, fIETg, and fJETg have already been
de� ned from the connectivity information (see Fig. 1).

a) Compute fICg and fJAg (symbolic assembly phase).
b) Compute fIAg from Eq. (20).

2) Assume that vectors fIAg and fJAg have already been de� ned
from the symbolic assembly (task 1). Compute fANg and fADg from
[A.e/] (numerical assembly phase).

III. Sparse Algorithms for Solving
Symmetrical Equations

In this section, the major tasks involved in solving sparse sys-
tems of linear equations are brie� y explained. The success of the
sparse solver is due to improved technologies (i.e., equation re-
ordering,matrix decomposition,supernodesand loop unrolling,for-
ward/backward solution phases) and bookkeeping strategies ideal
for implementationon a digitalcomputer.Moredetailedinformation
on improved technologies can be obtained from Refs. 2–14.

A. Sparse Reordering Algorithms
After imposing the boundary conditions, the modi� ed stiffness

matrix [NA] can be obtained from [A] as indicated in the discussions
before Eq. (12). Equation (12) should never be solved directly. To
further simplify the discussions,we will assume that matrix [NA] has
the following numerical values:

[NA.N ; N /] D

2

66666664

110 7 4 0 5 3

7 112 0 2 0 0

4 0 66 0 0 0

0 2 0 11 1 0

5 0 0 1 88 0

3 0 0 0 0 44

3

77777775

(27)

Thus, in this case N D 6 and N1 D 6. During the factorizationphase,
many of the zero-value terms appearing in Eq. (27) may become
nonzero. For maximum ef� ciency of storage and solution time, the
equations are reordered so that the number of nonzero terms that
occurduringfactorizationare minimized.These extranonzeroterms
created during the factorizationof [NA] are referred to as � ll ins and
are denoted by the symbols F in the following equation:

[NAF .N ; N /] D

2

66666664

X X X 0 X X

X F X F F

X F F F

X X F

X F

X

3

77777775

(28)

In Eq. (28), one has eight extra (or new) nonzero � ll ins. As a result,

NF D 8 (29)

N2 D N 1 C NF D 6 C 8 D 14 (30)

Ingeneral,the numberof nonzerocoef� cients in theuppertriangular
part of [NA] after factorization(N2) is much larger than those before
factorization (N1).

The purposeof reorderingalgorithms[multipleminimumdegrees
(MMD), nested dissection, or METIS algorithms] is to rearrange
the nonzero terms of [NA], de� ned in Eq. (27), to different locations
so that N 2 is minimized.5;17¡23 For example, applying the MMD
reorderingalgorithm to [NA] will result in the following permutation
and inverse permutation vectors:

fIP.N /g D f5; 6; 3; 1; 4; 2gT ; fIV.N /g D f4; 6; 3; 5; 1; 2gT

(31)

With the permutation array fIPg, the matrix [NA] in Eq. (27) can be
transformed into

[NAR.N; N /] D

2

66666664

11 0 0 1 0 2

0 44 0 0 3 0

0 0 66 0 4 0

1 0 0 88 5 0

0 3 4 5 110 7

2 0 0 0 7 112

3

77777775

(32)

Now, if one factorizes [NAR], there will be only one � ll in that
occurs, as follows:

[NARF.N ; N /] D

2

6666664

X 0 0 X 0 X

X 0 0 X 0

X 0 X 0

X X F

X X

X

3

7777775
(33)

B. Sparse Symbolic Factorization
The reorderedmatrix [NAR] can be describedby the followingfour

one-dimensionalvectors:

fIA.N C 1/g D f1; 3; 4; 5; 6; 7; 7gT

fJA.N1/g D f4; 6; 5; 5; 5; 6gT (34)

fAD.N /g D f11; 44; 66; 88; 110; 112gT

fAN.N1/g D f1; 2; 3; 4; 5; 7gT (35)

In this example, N D 6 and N1 D 6. Before performing the numer-
ical factorization, it is necessary to go through the sparse symbolic
factorization,so that the following hold true:

1) The nonzero pattern of [NARF] can be determined (including
the locations of � ll ins).

2) The value of N 2 can be determined so that adequate com-
puter memory can be allocated for the subsequentsparse numerical
factorizationphase.

On completion of the sparse symbolic factorization phase, the
nonzero patterns of [NARF] are completely known, and the modi� ed
versions of Eqs. (34) and (35) for the factored matrix [NARF] can be
computed as

fIA.N C 1/g D f1; 3; 4; 5; 7; 8; 8gT

fJA.N2/g D f4; 6; 5; 5; 5; 6; 6gT (36)

In this case,

N 2 D N1 C NF D 6 C 1 D 7 (37)

Ef� cient sparse symbolic factorization algorithms and detailed
FORTRAN coding can be found elsewhere.2;5¡7

666 WATSON ET AL.

C. Finding Supernodes
To understandthe conceptof a supernode(or master node), notice

that, in Eq. (33), rows 2–3 and 4–5 have the same nonzero patterns.
That is, the nonzero terms in rows 2–3 correspond to the same
column numbers. Equation (33) can be used to de� ne a master DOF
vector

fMS.N /g D f1; 2; 0; 2; 0; 1gT (38)

The master DOF vector fMSg is basedon the assumedsystemmatrix
[NARF] de� ned in Eq. (33). Once Eq. (38) has been de� ned, effective
loop-unrollingtechniques2;23 can be used to improve computational
speed during the sparse numerical factorizationphase.

D. Sparse Numerical Factorization Phase
The strategiesemployedin this phase are quite similar to the ones

used during the sparse symbolic factorization phase and have been
well documented in the literature.5;24 The reordered system matrix
[NAR] can be decomposed or factorized as

[NAR] D [L][D][L]T (39)

Here, [D] is a diagonal and [L] is unit lower triangularmatrix, and

[D]II D

8
><

>:

[NAR]11 .I D 1/

[NAR]II ¡
I ¡ 1X

K D 1

[D]KK[L]KI .I D 2; 3; : : : ; N /

9
>=

>;

(40)

[L]IJ D
8
>>>><

>>>>:

[NAR]IJ

[D]II
.I D 1; J D 2; : : : ; N /

[NAR]IJ ¡
I ¡ 1X

K D 1

[D]KK[L]KI[L]KJ

[D]II
.I 6D 1; J D I C 1; : : : ; N /

9
>>>>=

>>>>;

(41)

E. Solution to the System Matrix Equation
The solution to the system matrix equation [Eq. (12)] is obtained

in three phases:
1) In the � rst phase (forward solution phase), an intermediate

solution vector f8FFg is computed from the solution of the matrix
equation

[L]f8FFg D f NFR g (42)

2) In the second phase (backward solutionphase), a vector f8BBg
is computed from the matrix equation

[D][L]T f8BBg D f8FFg (43)

3) In the thirdphase(backtransformationphase), thevectorf8BBg
is transformed back to the original unknown vector f8g by utilizing
the inverse permutation vector fIVg.

IV. Three-Dimensional Aeroacoustics Application
The developed algorithm will be exercised to study the propa-

gation of acoustic pressure waves in a three-dimensionalduct lined
with soundabsorbingmaterials(acousticliners) as depictedin Fig. 2.
The duct is spanned by axial coordinate z, transverse coordinate x ,
and spanwise coordinate y. The source plane is located at z D 0, and
the source plane acousticpressure ps is assumed known. At the exit
plane, the dimensionless exit acoustic impedance ³exit is assumed
known. In the duct, air is � owing along the positive z axis at a sub-
sonic speed of u0, and the duct has acoustic liners along its upper,
lower, and two sidewalls. The duct walls are assumed to be locally
reacting so that the sound absorbingpropertiesof the acoustic liners
results from the dimensionless wall impedance ³ that is assumed
known. The sound source pressure, dimensionless exit impedance,
and dimensionless wall impedance are assumed functions of posi-
tion along their respective boundaries.

Fig. 2 Three-dimensional duct and coordinate system.

A. Mathematical Formulation
The mathematical formulation of the duct acoustics problem

(Fig. 2) does not lead to a boundary value problem that is for-
mally self-adjoint and will not lead to a symmetric system ma-
trix when air� ow is considered.Thus, the analysis in the foregoing
discussion does not allow for air� ow because the current paper fo-
cuses on symmetric systems. With zero air� ow in the duct (u0 D 0),
the mathematical problem is to � nd the solution to Helmholtz’s
equation15

r2 p C k2 p D 0 (44)

Along the source plane of the duct .z D 0/, the boundary condition
is given in term of a Dirichlet boundary condition:

p D ps (45)

The wall boundary condition is

@p

@n
D ¡ik

p

³
(46)

At the duct termination .z D L/, the ratio of acousticpressure to the
axial component of acoustic particle velocity is proportional to the
known dimensionless exit impedance. When expressed in terms of
the acoustic pressure, this boundary condition is

@p

@n
D ¡ik

p

³exit

(47)

Equations (44–47) form a well-posed boundary value problem
for which exact solutions for the acoustic pressure � eld are gener-
ally not known. A solution for the acoustic pressure � eld satisfying
this boundary value problem is required to predict and reduce the
radiated noise. An approximate solution for the acoustic pressure
� eld can be obtained using numerical techniques such as the � nite
element method.

B. Finite Element Model
The approximate solution for the sound � eld in the duct is ob-

tained by subdividing the duct and representing the acoustic � eld
within each subdivisionby relatively simple functions.Because the
duct of interest is a rectangularprism, the computationaldomain is
divided into a number of smaller rectangular prisms (or elements)
as shown in Fig. 3. These elements are consideredinterconnectedat
joints called nodes. The most widely used method for locating the
nodes in the discretizationis to divide the physicalvolume into NX,
NY , and NZ grid lines in the x , y, and z directions, respectively, as
shown in Fig. 3. Each node of an element can be located by iden-
tifying an ordered triplet, (x I , yJ , zK). Similarly, each element in
the assemblage can be identi� ed by an ordered triplet of integers
(I , J , K). A typical rectangular prism element (I , J , K) is shown
in Fig. 4. Each element consists of eight local node numbers labeled

WATSON ET AL. 667

Fig. 3 Three-dimensional � nite element discretization.

Fig. 4 Typical three-dimensional element and local node numbering
system.

1, 2, : : : , 8. Each element is considered to have a dimension of h,
w, and l in the x , y, and z directions, respectively, as shown.

C. Element Stiffness Matrix
Galerkin’s � nite element method is used to compute the element

stiffness matrix. The � eld error function is de� ned as

Er D r2 p C k2 p (48)

Within each element, p is represented as a linear combination of
eight functions, N1 , N2 , : : : , N8,

p D
m D 8X

m D 1

Nm pm (49)

N1 D
³

1 ¡
x

h

´³
1 ¡

y

w

´³
1 ¡

z

l

´

N2 D
³

1 ¡
x

h

´³
y

w

´³
1 ¡

z

l

´
; N3 D

xy

.wh/.1 ¡ z=l/

N4 D
³

x

h

´³
1 ¡

y

w

´³
1 ¡

z

l

´

N5 D
³

1 ¡
x

h

´³
1 ¡

y

w

´³
z

l

´

N6 D
³

1 ¡
x

h

´³
y

w

´³
z

l

´
; N7 D

xyz

whl

N8 D
³

x

h

´³
1 ¡

y

w

´³
z

l

´
(50)

The linear combination[Eq. (49)] comprises a complete set of basis
functions.

For a typicalelement (I , J , K), contributionsto the minimization
of the � eld error functiondue to localnodem over the computational
volume V areZ

V

Er Nm dV D
Z

V

[r2 p C k2 p]Nm dV (51)

The second derivative terms in Eq. (51) are reduced to � rst deriva-
tives using Green’s second identity
Z

V

Er Nm dV D
Z

V

£
¡frgp ¢ frgNm C k2 pNm

¤
dV C

Z

S

@p

@n
Nm dS

(52)

Elimination of the second derivative terms from the volume inte-
gral in Eq. (51) is required so that the linear basis functions Nm

can be used. Elimination of the second derivative terms from the
volume integral also has the advantagethat all impedanceboundary
conditions can be incorporatedinto the surface integral of Eq. (52).
This allows a choice of basis functions that do not have to satisfy
explicitly any impedance boundary conditions. The contribution to
the surface integral

Z

S

@p

@n
Nm dS (53)

is identically zero for all elements except those that lie along
an impedance boundary. Substituting the exit boundary condition
[Eq. (47)] into the surface integral in Eq. (53) gives

Z

S

@p

@n
Nm dS D ¡ik

Z

S

p

³exit
Nm dS (54)

along the exit boundary, whereas for elements that lie along the
upper, lower, and sidewalls of the duct

Z

S

@p

@n
Nm dS D ¡ik

Z

S

p

³
Nm dS (55)

The contribution to the minimization of the � eld error for each
element, when collected for each of the eight local nodes m, is
expressed in matrix form as

8
>>>>>>>>>>><

>>>>>>>>>>>:

Z

V

Er N1 dV

Z

V

Er N2 dV

:::
Z

V

Er N8 dV

9
>>>>>>>>>>>=

>>>>>>>>>>>;

D
£
A.I;J;K /

¤©
8.I;J;K /

ª
(56)

In Eq. (56), f8. I;J;K /g is an 8 £ 1 column vector for each element
containing the unknown acoustic pressures at the eight local nodes
of the element

©
8.I ;J;K /

ªT D f p1; p2; p3; p4; p5; p6; p7; p8g (57)

The element matrix [A.I;J;K /] is an 8 £ 8 complex symmetric
matrix for each element (I , J , K). In the special case of a hard wall
duct (³ D 1),

£
A.I;J;K /

¤
D

»
[P]; K 6D .NZ ¡ 1/

[P] C [B]; K D .NZ ¡ 1/

¼
(58)

668 WATSON ET AL.

Here, [P] representsthe contributionto [A.I;J;K /] due to the element
volume V , whereas [B] represents the contributionsdue to the exit
plane boundary.The matrices [P] and [B] are symmetric, and their
coef� cients have been computed explicitly:

[P] D
k2whl

216
[A] ¡ wl

36h
[B] ¡

hl

36w
[C] ¡ wh

36l
[F] (59)

[A] D

2

666666666664

8 4 2 4 4 2 1 2

4 8 4 2 2 4 2 1

2 8 4 1 2 4 2

4 2 4 8 2 1 2 4

4 2 1 2 8 4 2 4

2 4 2 1 4 8 2 4

1 2 4 2 2 2 8 4

2 1 2 4 4 4 4 8

3

777777777775

[B] D

2

666666666664

4 2 ¡2 ¡4 2 1 ¡1 ¡2

2 4 ¡4 ¡2 1 2 ¡2 ¡1

¡2 ¡4 4 2 ¡1 ¡2 2 1

¡4 ¡2 2 4 ¡2 ¡1 1 2

2 1 ¡1 ¡2 4 2 ¡2 ¡4

1 2 ¡2 ¡1 2 4 ¡4 ¡2

¡1 ¡2 2 1 ¡2 ¡4 4 2

¡2 ¡1 1 2 ¡4 ¡2 2 4

3

777777777775

(60)

[C] D

2

666666666664

4 ¡4 ¡2 2 2 ¡2 ¡1 1

¡4 4 2 ¡2 ¡2 2 1 ¡1

¡2 2 4 ¡4 ¡1 1 2 ¡2

2 ¡2 ¡4 4 1 ¡1 ¡2 2

2 ¡2 ¡1 1 4 ¡4 ¡2 2

¡2 2 1 ¡1 ¡4 4 2 ¡2

¡1 1 2 ¡2 ¡2 2 4 ¡4

1 ¡1 ¡2 2 2 ¡2 ¡4 4

3

777777777775

(61)

[F] D

2

666666666664

4 2 1 2 ¡4 ¡2 ¡1 ¡2

2 4 2 1 ¡2 ¡4 ¡2 ¡1

1 2 4 2 ¡1 ¡2 ¡4 ¡2

2 1 2 4 ¡2 ¡1 ¡2 ¡4

¡4 ¡2 ¡1 ¡2 4 2 1 2

¡2 ¡4 ¡2 ¡1 2 4 2 1

¡1 ¡2 ¡4 ¡2 1 2 4 2

¡2 ¡1 ¡2 ¡4 2 1 2 4

3

777777777775

(62)

[B] D ¡ik
wh

144

2

666666666664

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 f1 f2 f3 f4

0 0 0 0 f2 f5 f6 f3

0 0 0 0 f3 f6 f7 f8

0 0 0 0 f4 f3 f8 f9

3

777777777775

(63)

f1 D 9¯exit.x I ; yJ / C 3¯exit.x I ; yJ C 1/

C ¯exit.x I C 1; yJ C 1/ C 3¯exit.x I ; yJ C 1/

f2 D 3¯exit.x I ; yJ / C ¯exit.x I ; yJ C 1/]

C ¯exit.x I C 1; yJ C 1/ C ¯exit.x I ; yJ C 1/

f3 D ¯exit.x I ; yJ / C ¯exit.x I ; yJ C 1/

C ¯exit.x I C 1; yJ C 1/ C ¯exit.x I ; yJ C 1/

f4 D 3¯exit.x I ; yJ / C ¯exit.x I ; yJ C 1/

C ¯exit.x I C 1; yJ C 1/ C 3¯exit.x I ; yJ C 1/

f5 D 3¯exit.x I ; yJ / C 9¯exit.x I ; yJ C 1/

C 3¯exit.x I C 1; yJ C 1/ C ¯exit.x I ; yJ C 1/

f6 D ¯exit.x I ; yJ / C 3¯exit.x I ; yJ C 1/

C 3¯exit.x I C 1; yJ C 1/ C ¯exit.x I ; yJ C 1/

f7 D ¯exit.x I ; yJ / C 3¯exit.x I ; yJ C 1/

C 9¯exit.x I C 1; yJ C 1/ C 3¯exit.x I ; yJ C 1/

f8 D ¯exit.x I ; yJ / C ¯exit.x I ; yJ C 1/

C 3[¯exit.x I C 1; yJ C 1/ C ¯exit.x I ; yJ C 1/]

f9 D 3¯exit.x I ; yJ / C ¯exit.x I ; yJ C 1/

C 3¯exit.x I C 1; yJ C 1/ C 9¯exit.x I ; yJ C 1/ (64)

in which

¯exit D 1=³exit (65)

V. Results and Discussion
The three-dimensionalrigid wall acoustic element has been cou-

pled with the sparse assembly and equation solver algorithms to
provide assembly and solver statistics for a three-dimensionalduct
aeroacoustics application. Computations presented in this paper
were run on a single processor with double-precision(64-bit) arith-
metic on an ORIGIN 2000 computer platform. The sparse equation
solver used MMD reordering. Computations are presented for a
uniform grid and a geometry identical to that of the Langley Flow
Impedance Tube. This three-dimensional duct has a square cross
section 0.0508 m in width (W D H D 0.0508 m) and 0.812 m in
length (L D 0:812 m). A more detailed description of the duct is
given in Ref. 15. All calculations were performed at standard at-
mospheric conditions without � ow, and the source frequency was
chosen to span the full range of frequencies currently of interest in
duct liner research.The sound was chosen as a plane wave (ps D 1),
and thedimensionlessexit impedancewas chosenas unity(³exit D 1).
This exit impedance will simulate a nonre� ecting termination for
the plane wave source.

Table 1 presents CPU statistics (in seconds) for each of the three
assembly algorithmsand the sparse equation solver as a function of
the source frequency f , in kilohertz. The CPU time for the solver
(column9) is that requiredto obtain the solutionvectorafter the sys-
tem matrix was assembled. Note that before obtaining the solution
vector, the system matrices obtained from each assembly algorithm
were compared to each other. Each assembly algorithm assembled
the identicalsystemmatrix as expected.Also includedin Table 1 are
the numberof grid linesNX, NY , and NZ and the matrix order N that
were used to perform the computations at each frequency.Here we
have used the generallyaccepted rule that 12 points per wavelength
is required to resolve a cut-on mode in each coordinatedirection.To
establish the accuracyof the solver solutions,the relativeerror norm
(Relerr), computed from the solver solutionvector, was tabulated in
the � nal column of Table 1. The relative error norm2 is de� ned as

Relerr D
fENg¤ £ fENgT

f NF g¤ £ f NFgT
(66)

where

fENg D [NA]f8g ¡ f NFg (67)

WATSON ET AL. 669

Table 1 CPU time (in seconds) and error statistics for the sparse algorithms

f NX NY NZ N Algorithm 1 Algorithm 2 Algorithm 3 Solver Relerr

4.00 6 6 114 4,104 49.20 0.34 0.22 6.00 6:5 £ 10¡15

7.00 12 12 200 28,800 106.80 2.50 1.75 22.80 1:8 £ 10¡12

11.00 18 18 313 101,412 1,123.80 9.05 2.28 487.80 7:5 £ 10¡12

14.00 24 24 399 229,824 5,520.60 20.74 14.24 3,120.00 3:4 £ 10¡11

17.00 30 30 484 435,600 19,488.00 39.78 26.94 10,440.00 3:2 £ 10¡11

21.00 36 36 599 776,304 N/A 73.81 48.35 N/A N/A

Table 2 RAM statistics (in megabytes) for the sparse algorithms

f N N1 Algorithm 2 Algorithm 3 Solver

4.00 4,104 41,468 0.47 0.46 4.00
7.00 28,800 331,244 21.00 11.00 80.00
11.00 101,412 1,216,118 72.00 37.00 640.00
14.00 229,824 2,812,838 165.00 83.00 2,140.00
17.00 435,600 5,396,600 317.00 158.00 8,100.00
21.00 776,304 9,696,158 551.00 283.00 N/A

Tabular resultsat 21 kHz are not presentedfor assembly algorithm1
and the sparse equation solver because of the excessive CPU time
required by these two algorithms.

Although algorithm 1 is extremely simple, its performance is
extremely slow (Table 1). Note that algorithm 1 is 145 times slower
than the other two algorithms at a frequency of 4 kHz and more
than 490 times slower at 17 kHz. Tabular results also show that the
CPU time required to assemble the system matrix using algorithm1
exceeds that required to obtain the solution vector by 9048 s (or
87%) at 17 kHz. At low frequencies, algorithm 2 is only slightly
slower than algorithm 3, but as the frequency increases to 17 kHz,
algorithm 3 is 32% faster than algorithm 2. Generally, the higher
the frequency, the better the performanceof algorithm 3, relative to
that of algorithm 2. Furthermore, in using algorithm 2, the user has
to guess the maximum number of nonzero terms per row (MZ) to
allocate the RAM for the matrix [HA]. Also, the CPU times required
to assemble the system matrix using algorithm 2 or algorithm 3 are
both more than two orders of magnitude less than the time required
to obtain the solution vector. Finally, Relerr is small, indicating that
the solver solution is accurate.

Table 2 shows the RAM (in megabytes) for algorithm 2, algo-
rithm 3, and the sparse equation solver. RAM statistics for algo-
rithm 1 were not tabulated because its performance was extremely
slow when compared to algorithm 2 and algorithm 3 (as shown in
Table 1). Values of the variables N and N1 are also given in Table 2.
The results show that the number of off-diagonal nonzero coef� -
cients (N1) is an order of magnitude larger than N . Table 2 also
shows that algorithm 3 requires less memory than algorithm 2 be-
causealgorithm2 must allocateRAM for storing vectors fIRg, fJCg,
and [HA] [see Eqs. (13–15)]. Note also that memory requiredby the
sparse equation solver is substantially larger than that required for
assemblyalgorithm2 or algorithm3. This is further veri� cation that
most of the RAM allocated is used during matrix factorization.Pre-
liminary results from tests conductedby the authors have suggested
that the performance of the sparse equation solver may improve if
the solver were to use METIS instead of MMD reordering. For ex-
ample,at 7 kHz the numberof nonzerosafter factorization(N2) was
reduced from 4,736,991 with MMD reordering to only 4,376,496
when the METIS reordering algorithm was used.

VI. Conclusions
A template for symmetric sparseequationassemblyand solutions

on an unstructured grid has been presented. The accuracy and nu-
merical performance of the sparse algorithms have been evaluated
over the frequency range of interest in a three-dimensional aeroa-
cousticsapplication.Based on the resultsof this study, the following
conclusions are drawn:

1) Assembly algorithm1 is impractical for system matrix assem-
bly at high values of source frequency. It requires up to 87% more
CPU time to assemble the system matrix than the sparse equation
solver requires to obtain the solution vector.

2) Assembly algorithms 2 and 3 have nearly equal performances
at low values of source frequency, but algorithm 3 gives savings
in both CPU time (32%) and RAM (50%) at the higher values of
source frequency.

3) Error norm statistics show that the sparse equationsolver com-
putesaccurateacousticsolutionsover the frequencyrangeof interest
for the three-dimensionalaeroacoustics application.

4) At high frequency(17 kHz), the sparseequationsolver requires
low memory, but requires signi� cant speed-up before optimization
studies (either of the duct geometry or liner material properties) are
practical. This research supports a recommendation, therefore, that
a parallel version of the sparse solver be developed.The CPU time
and RAM requiredby assemblyalgorithms2 and 3 are two ordersof
magnitude smaller than that required by the sparse equation solver.
These algorithms can, therefore, be conveniently incorporated into
a substructuring(or domain decomposition) formulation (provided
that each substructure is handled by different processors) to take
advantage of parallel computation to further reduce CPU time and
RAM.

References
1Stead, D., “A Best Choice Numerical Method for Large-Scale Compu-

tations in Aeroacoustics,” M.S. Thesis, Joint Inst. of Acoustics and Flight
Science, George Washington Univ., Hampton, VA, June 1999.

2Nguyen, D., Parallel-Vector Equation Solvers for Finite Element Engi-
neering Applications, Kluwer/Plenum, Norwell, MA, 2001, Chap. 10.

3Nguyen, D., Hou, G., Runesha, H., and Han, B., “Alternative Approach
for Solving Sparse Inde� nite Symmetrical System of Equations,” Advances
in Engineering Software, Vol. 31, Nos. 8–9, 2000, pp. 581–584.

4Chen, P., Runesha, H., Nguyen, D., Tong, P., and Chang, T., “Sparse Al-
gorithms for Inde� nite Systems of Linear Equations,” Computational Me-
chanics Journal, Vol. 25, No. 1, 2000, pp. 33–41.

5George, A., and Liu, J., Computer Solutionof Large Sparse Positive Def-
inite Systems, Prentice–Hall, Englewood Cliffs, NJ, 1981, Chaps. 5 and 10.

6Pissanetzsky, S., “Gauss Elimination with Supersparse Matrices,”
Brookhaven National Lab., Rept. BNL 26773, Upton, NY, 1979.

7Simon, H., Vu, P., and Yang, C., “Performance of a Supernodal General
Sparse Solver on the Cray-YMP: 1.68 GFLOPS with Autotasking,”Applied
Mathematics TR, Boeing Computer Services, SCA-TR-117, Seattle, WA,
March 1989.

8Liu, J., “The Role of Elimination Trees in Sparse Factorization,” SIAM
Journal of Matrix Analysis Application, Vol. 11, No. 1, 1990, pp. 134–

172.
9Duff, I., and Reid, J., “MA27-A Set of Fortran Subroutines for Solv-

ing Sparse Symmetric Sets of Linear Equations,” Atomic Energy Research
Establishment, TR R-10533, Harwell, England, U.K., 1982.

10Duff, I., and Reid, J., “The Multifrontal Solution of Inde� nite Sparse
Symmetric Linear Systems,” Association for Computing Machinery Trans-
actions Mathematical Software, Vol. 9, No. 3, 1983, pp. 302–325.

11Duff, I., Gould, N., Reid, J., Scott, J., and Turner, K., “Factorization
of Sparse Symmetric Inde� nite Matrices,” Institute of Mathematics and Its
Applications Journal of Numerical Analysis, Vol. 11, No. 9, 1991, pp. 181–

204.
12Duff, I., Grimes, R., and Lewis, J., “Users’ Guide for the Harwell–

Boeing Sparse Matrix Collection (Release I),” Rutherford Appleton Lab.,
TR 92-086, Chilton, England, U.K., 1992.

13Duff, I., and Reid, J., “MAAT, a Fortran Code for Direct Solution of
Inde� nite Sparse Symmetric Linear Systems,” Rutherford Appleton Lab.,
RAL-95-001, Chilton, England, U.K., Jan. 1995.

14Ng, E., and Peyton,B., “Block Sparse Choleski Algorithmon Advanced
Uniprocessor Computer,” SIAM Journal of Scienti� c Computing, Vol. 14,
No. 5, 1993, pp. 1034–56.

15Watson, W., “Three-Dimensional Nacelle Aeroacoustic Code with Ap-
plication to Impedance Eduction,” AIAA Paper 2000-1956, June 2000.

16Chandrakant, S., and Abel, J., Introduction to the Finite Element
Method, Van Nostrand Reinhold, New York, 1972, pp. 75–147.

670 WATSON ET AL.

17Ashcraft, C., “Compressed Graphs and the Minimum Degree Al-
gorithm,” SIAM Journal of Scienti� c Computing, Vol. 16, No. 6, 1995,
pp. 1404–411.

18Gamma, E., Helm, R., Johnson,R., and Vlissides, J., “Design Patterns:
Elements of Reusable Object-Oriented Software,” Addison Wesley Profes-
sional Computing Series, Addison Wesley Longman, Reading, MA, 1995,
pp. 25–30.

19George, J., and Liu, J., “The Evolution of the Minimum Degree Al-
gorithm,” Society for Industrial and Applied Mathematics, Vol. 31, No. 1,
1989, pp. 1–19.

20Liu, J., “Modi� cation of the Minimum-Degree Algorithm by Multi-
ple Elimination,” Association for Computing Machinery, Transactions on
Mathematical Software, Vol. 11, No. 2, 1985, pp. 141–53.

21Kumfert, G., and Pothen, A., “An Object-Oriented Collection of Min-
imum Degree Algorithms: Design, Implementation, and Experiences,”

NASA CR-1999-2089771999; also Inst. for Computer Applications in Sci-
ence and Engineering, Rept. 99-1, Hampton, VA, Jan. 1999.

22Amestoy, P., Davis, T., and Duff, I., “An Approximate MinimumDegree
Ordering Algorithm,”Computerand InformationScience Dept., TR-94-039,
Univ. of Florida, Gainesvine, FL, Dec. 1994.

23Karypis, G., and Kumar, V., “METIS: Unstructured Graph Partitioning
and Sparse Matrix Ordering,” Ver. 2.0, Univ. of Minnesota, Minneapolis,
MN, 1995.

24Runesha,H., andNguyen,D., “Vectorized SparseUnsymmetrical Equa-
tion Solver for Computational Mechanics,” Advances in Engineering Soft-
ware, Vol. 31, Nos. 8–9, 2000, pp. 563–570.

P. J. Morris
Associate Editor

