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An algorithm for symmetric sparse equation solutions on an unstructured grid is described. Efficient, sequen-
tial sparse algorithms for degree-of-freedom reordering, supernodes, symbolic/numerical factorization, and for-
ward/backward solution phases are reviewed. Three sparse algorithms for the generation and assembly of symmet-
ric systems of matrix equations are presented. The accuracy and numerical performance of the sequential version
of the sparse algorithms are evaluated over the frequency range of interest in a three-dimensional aeroacoustics
application. Results show that the solver solutions are accurate using a discretization of 12 points per wavelength.
Results also show that the first assembly algorithm is impractical for high-frequency noise calculations. The sec-
ond and third assembly algorithms have nearly equal performance at low values of source frequencies, but at
higher values of source frequencies the third algorithm saves CPU time and RAM. The CPU time and the RAM
required by the second and third assembly algorithms are two orders of magnitude smaller than that required
by the sparse equation solver. A sequential version of these sparse algorithms can, therefore, be conveniently in-
corporated into a substructuring (or domain decomposition) formulation to achieve parallel computation, where

different substructures are handled by different parallel processors.

Nomenclature D1, [£] = diagonal and unit lower triangular matrices
[A], {F} = global stiffness matrix and load vector d; = value of field variable at local node /
without source effects [E] = element degree-of-freedommatrix
[A], {F} = global stiffness matrix and loads vector {EN} = discrete error vector
with source effects E., Ny = error and three-dimensional basis functions
[AL [BL [CI, [F] = local element matrices for a rigid wall duct F = fill in resulting from matrix factorization
{AD}, {AN}, {a} = one-dimensionalarrays containing sparse {F} = Ith component of {F}
matrix coefficients {F(N)} = {F} vectorof length N
[A€], {F©} = element stiffness matrix and loads vector Ik = source frequency and free
Ay, AL fi = complex matrix coefficients space wave number
[B], [P] contributions to the element stiffness H,L,W = height, length, and width of
matrix due to the exit plane and three-dimensionalduct
interior elements [HA], {ha} = matrix of pointers for sparse assembly
[HAly = coefficient of the /th row and Jth column
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M = number of nonzero coefficients in a sparse
matrix, N + N1

ME = maximum number of elements connected
to a degree of freedom

{MM} = array of element numbers connected to a
degree of freedom

{MP} = array containing the number of elements
connected to a degree of freedom

{MS} = master degree-of-freedomarray

MZ = maximum number of nonzero coefficients
per row

N = number of unknownsin the finite element
discretization

NE, NP = number of finite elements and degrees of
freedom per element

NF = number of fill ins during factorizationof a
matrix

NX, NY,NZ = total number of transverse, spanwise, and
axial nodes

N1 = number of nonzero, off-diagonal
coefficients before factorization

N2 = number of nonzero, off-diagonal
coefficients after factorization

D = acoustic pressure field

DPm> Ds = acoustic pressure at local node m and
source pressure

Relerr, ug = relative error norm and uniform flow speed

S,V = surface and volume of a finite element

X = nonzero value that was modified during
matrix factorization

X, 9,2 = Cartesian coordinates

X1, Y7, 2K = transverse, spanwise, and axial locations
of grid lines

Bexit = dimensionlessexit admittance

ap/on = derivative of the acoustic pressure
normal to a surface

dimensionless wall and exit impedance
global vector of unknowns

local vectors of unknowns
intermediate vectors for forward and
backward substitution

;, ;exit

(@}

(D}, (@75}
{®rr}, (PaB}

®,, F = vector components

(V}, V2 = gradient vector and Laplace operator
. = vector dot product

Subscripts

exit, s = exitand source plane index

F, R = factored and reordered matrix

FF, BB = forward and backward substitution
1,J = row and column index of a matrix
Superscripts

e = truss element number

1,J,K = grid line locator for three-dimensionalduct
T = matrix or vector transpose

* = complex conjugate

I. Introduction

HREE-DIMENSIONAL aeroacoustics codes that can accu-

rately predict the noise radiated from commercial aircraft are
needed.! Currently, noise predictioncodes require the use of a linear
equationsolverbeforeradiated noise can be predicted. An optimizer
must then run the noise predictive code on a digital computer hun-
dreds of times to achieve an aircraft design with a minimal noise
radiation signature.

Currently, industry and government aircraft noise predictive
codes are either two-dimensional or treat only axisymmetric noise
signatures.! When the volumes are three-dimensional,the currently
used equation solvers require an excessive amount of CPU time
and RAM for their assembly and solution. This excessive CPU time
and computer storage restricts aircraft noise prediction codes to

low-frequency sound sources in two-dimensional or axisymmetric
environments.

Sparse equation solving technologies'* have been developed
and are well documented for several engineering applications, and
the computational advantage of sparse solver technology over the
more conventional technologies (such as band or skyline solvers)
has been demonstrated. In addition, for practical engineering appli-
cations, system matrix equations must be developed for an unstruc-
tured grid to which boundary conditions are often difficult to apply.
The finite element method is the simplest for generating the system
matrix on an unstructured grid.

Only recently have sparse solver technologies been applied to
aeroacoustics."!* In Ref. 1, several direct and iterative equation
solvers were evaluated to determine their applicability to two-
dimensional duct aeroacousticscomputations with the direct sparse
solver emerging as the most promising. In Ref. 15, sparse solver
equation solving methodology was extended to three-dimensional
acoustically lined ducts. However, the work presented in Ref. 15
adopted the assembly strategy that is currently available in the lit-
erature for assembling system sparse matrix equations. This simple
but inefficient assembly strategy precludes the use of sparse solvers
for three-dimensional aeroacoustic computations.®

Most, if not all, major codes for analysis and optimal design al-
low users to select either iterative or direct equation solvers. For
nacelle aeroacoustics computations, iterative solvers are not as ro-
bust as direct solvers because the nacelle equation system is poorly
conditioned.! Iterativesolutionmethods, when appliedto systems of
poorly conditionedequations,have the disadvantagethat they do not
converge, or they converge very slowly. A further disadvantage of
applyingiterative solutionmethodsto solve the nacelleequationsys-
tem is that the nacelle equation system often contains multiple right-
hand ssides. Iterativemethods are not as efficient as direct methodson
equation systems with multiple right-hand sides because the equa-
tion system must be reformed and resolved for each right-hand side.

The long-term objective of this researchis to acquire the capabil-
ity to design quiet aircraftin a fully three-dimensionalaeroacoustic
environment using direct sparse solver technologies and the finite
element methodogy. The current paper has two objectives. The first
objective is to bridge the gap between the aeroacousticians (who
may not have a comprehensive knowledge of sparse assembly and
equation solver technologies) and members of the sparse research
community (who may not have comprehensive knowledge of fi-
nite element analysis and aeroacoustics). The second objectiveis to
presentefficient algorithms for assembling sparse matrix equations.

Section II describes three sparse assembly algorithms for gener-
ating systems of sparse linear equations. Section III describes the
template that is used to develop a complete, unstructured grid, fi-
nite element code, that is, equation reordering, symbolic/numerical
factorization,supernodes/Aoop unrolling,and forward/backward so-
lution phases. Section IV presents a detailed formulation of the el-
ement stiffness matrices that will be assembled using the sparse as-
sembly algorithmsto form the systemmatrix for a three-dimensional
duct aeroacoustics application. Finally, Sec. V discusses the accu-
racy and numerical performance of the developed algorithms over
the frequencyrange of interestfor a three-dimensionalaeroacoustics
application. Note that although the sparse algorithms presented as-
sume that the system matix equation is symmetric, these algorithms
are easily extendible to nonsymmetric systems of equations. The
algorithms can also be conveniently incorporated into a substruc-
turing (or domain decomposition) formulation to take advantage of
parallel computation to further reduce CPU time and RAM.

II. Sparse Assembly Algorithms
for Symmetric Systems

Figure 1 is a two-dimensional truss (or rod) structure assembled
from individual truss elements labeled (1), (2),..., (13) that are
interconnectedat eightnodes labeled 1, 2, . . ., 8. An element (e) of
the structure is assumed to possess only two points of connection,
and the external loads are assumed to be applied at the nodes of the
truss elements. Only a single degree of freedom (DOF) at each node
is assumed. To further simplify discussions, it is assumed that, by a
separate calculation, the element stiffness matrix and external load
vector for the truss element (e) are known and expressed as
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[A(E)(27 2)] — [A(lel) A(IEZ)} 7
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(e)
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Under the assumption of Eq. (1), the 13 truss elements (Fig. 1)
may be assembled using the rules of finite element assembly'® to
obtain the system matrix equation

[Al{®} = {F} 2

e=13

[AN. N =) [49@2,2)]

e=1

(A0 AR 0 AR AD 0 Al o
A Ay AT 0 AY 0 0 0
0 AD Aw 0 AR AR 0 A
AT 0 0 Ay AT 0 AR 0
A AY AT Y As AW 0 o
0 0 AL 0 A Ay 0 AP
AY 0 0 AF 0 0 Ay 0
L0 0 AT 0 0 AR 0 Ay |

3)

= A2+ AT 4 43

A= A2 4 A+ A+ A,

©) 9) a1 (12) 2) (3) (6)
A33:A22 +A22 +A22 +A22 . A44:A22 +A“ +All

Ao = A2+ D+ AT + AT+ AL

A= A9+ ALY + AL

_ A (2)
41 > A77_A11 +A11

Ay = Ay” + A3 @)

®,
®,
@,
o,
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®,
@,
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{e(N)} =

(1 (3) (4) (5)
F,"+F7+F" +F
F2(4) + F1(7) + FZ(S)
(@] ) 11 (12)
F,+F7+F, '+ F
FZ(Z) + Fl(3) + FG(I)
{F(N)} = F(5) (6) (8) ) (10) )
2 + FZ + Fl + Fl + Fl
FZ(G) + Fl(“) + Fl(l3)

Fl(l) + FZ('*) + F1(2)

(12) a3)
F,” +F,

Although only a single DOF (®;) is assumed at node I, the dis-
cussionto follow is easily extended to ¢ DOF pernode by extending
the coefficientsin [A], thatis, A;j), to ¢ X g submatrices. The rules
of matrix algebra would then be applied to each ¢ x g submatrix as
if it were a scalar.

A. Sparse Data Formats for the System Matrix
For the sake of brevity, in the discussions to follow it will be
assumed that the element stiffness matrix is symmetric so that

4 5 (100 6 (13)

Y

Fig.1 Two-dimensional truss sample problem.

[A(E)]” — [A(E)]U 6)

Under the assumptions of Eq. (6), the system matrix [A] is also
symmetric and can be written in the form

[A(N, N)]
(An A 0 AR AR 0 AR o]
AY Ay AD 0 AY 0 0 o0
0 AT Av 0 AR AR o AP
A 0 0 Ay AY
AY AT AT AR As AW 0 o
0 0 AL 0 AY Ay 0 AY
AY 0o 0 AY o 0 Ay 0
Lo 0 AY 0o 0 AY 0 Ay |
(M

The sparse descriptionsof any symmetric system matrix [A] [see
Eq. (7)] is fully described by the four one-dimensional vectors

{IA(N)} = {4,2,3,2,1,1,0,0}"

(JAIND)} ={2,4,5,7,3,5,5,6,8,5,7,6,8}" (®)
{AD(N)} = {Ay1, An, Asz, Aug, Ass, Ags, A7z, Agg}” 9

— @ AB) AG) A 4 (D) 4B) 4O
{AN(NI)} - {AIZ ’ AIZ ’ AIZ ’ AIZ ’ AIZ ’ AIZ ’ AIZ ’

(D 412) 4 (6) () 210 4,137
A Ap L AR AR AL Ay } (10)
B. Application of Boundary Conditions

In most engineering applications, the field variable at several
boundarynodesmay require constraintsto satisfy a Dirichlet bound-
ary condition of the form

(@}, =4, (1D

where d; is the specified value of the field variable at node 1.
Dirichlet boundary conditions may be applied at the element or
system level. The impact of applying Dirichlet boundary conditions
on the system matrix equation is identical whether applied at the
element or system level. We will show the relatively easy process
of applying Dirichlet boundary conditions at the element level and
their impact on the system matrix equation [Eq. (2)].

The process for inserting the Dirichlet boundary condition,
{®}, =d,, is as follows:

1) The column of [A®] corresponding to the /th DOF is multi-
plied by d;, and the resultis subtracted from { F©}.
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2) The column corresponding to the /th DOF in [A®] is made
zero.

3) The row correspondingto the /th DOF in [A®] is made zero.

4) The modified element matrix and the modified element load
vector are assembled.

5) [A]y is made equal to unity, and {F'}; is made equal to d;.

Thus, applying Dirichlet boundary conditions to the system ma-
trix equation modifies Eq. (2) to

[Al{®} = {F} (12)

The numerical values of the coefficients in the modified system
matrix [A] remain unchanged from those in [A], except for a few
that are made zero during the application of the Dirichlet boundary
conditions. Therefore, we will illustrate application of the assembly
algorithms to the nonzero pattern of [A].

C. Sparse Assembly Algorithms

Three symmetric sparse assembly algorithms will be explained
in this section. The purpose of each assembly algorithm is to gen-
erate the system loads vector {F'} and the four vectors defined by
Egs. (8-10), which correspond to [A]. The assembly algorithms
are discussed starting with the simplest and proceeding to the most
complex.

1. Algorithm 1

The main ideas of this algorithm can be summarized by the fol-
lowing computational tasks:

1) Find how many and which elements are connected to each
DOF.

a) Inputdata for N, NE, NP, and the elements connectivity (see
Fig. 1).

b) Compute the number of elements associated with each DOF,
and store this information into the one-dimensional integer vector
{MP(N)}.

¢) Find the element numbers associated with each DOF, and
store this information into the two-dimensional integer matrix
[MM(N,ME)].

2) Retrieve the stiffness matrix attached to each DOF, perform
sparse matrix assembly one row at a time, and extract the four one-
dimensional vectors required for the sparse equation solver.

2. Algorithm2

The nonzero patterns of the symmetrical matrix [A] [see Eq. (7)]
for the two-dimensionaltruss example problem (Fig. 1) can be com-
pletely described by the two one-dimensional integer vectors

{IRM)} ={7,1,1,4,4,1,1,2,1,5,4,2,3,2,3,5,6,3,3,8,6}"

13)
(JC(M)} =1{7,7,1,7,4,4,2,2,5,5,5,3,3,5,5,6,6,6, 8,8, 8}/
(14)
and the following integer matrix:
[2 3 6 7 9]
12 14 0
13 15 18 19 0
[HA(N,MZ)] = 405 1100 (15)
WMAT=116 16 0 0 o
17 21 0 0 O
1 0 0 0 O
|20 0 0 0 0]

The two one-dimensionalinteger vectors in Eqs. (13) and (14) are
constructedby cycling through each element (e) in increasing order
and then determining the row and column index of each nonzero
coefficient from the connectivity array for each element (Fig. 1).
Note that the matrix [HA] contains locations (or pointers) that are
used to refer to vectors {/R} and {J/C}. For example, the values
of [HA];, =4, [HA];; =5, and [HA]4; = 11 indicate that row 4 of

matrix [A] will have these nonzero terms. The exact locations (row
and column numbers) of those three nonzero terms in [A] can be
referred to as

{IR}, = 4,

{ICl =1, {IR}s =4

{JC}s =4, {IR},; = 4, Ych, =5 (16)
Thus, the three nonzero terms of the fourth row of [A] are located at
row 4, column 7; row 4, column 4; and row 4, column 5, respectively
[see Eq. (7)].

The integer matrix [HA] and system matrix [A] can be alterna-
tively stored as one-dimensional vectors:

{ha(M)} ={2,3,6,7,9,8,12, 14, 13, 15, 18, 19,
4,5,11,10,16,17,21,1,20}" (17)

A33,A(8) A(lz) A(G)

(2)
120> 2 > 127A447A

(@]
A227 A 12

12>

{a(M)} = {A(4) A®

1227712

A667A(13) A(5) A(l) A(ll) A(9)

(10) T
12 > 7012 “h 120 “h12 o 127A557A A887A117A77}

2
(18)

The main ideas of algorithm 2 can be summarized by the following
computational tasks:

1) After initializing {ha} to a zero vector, process all elements (in
ascending order) to obtain the integer vectors {/R} and {/C} while
assembling [A] into {a}.

2) Separate the diagonal and nonzero off-diagonal terms of [A]
from {a} and store this information in {AD} and {AN}. Separate the
diagonal and off-diagonalterms in {/R} and {/C}, and compute {JA}
and {IA}.

3. Algorithm 3

The nonzero patterns of the symmetrical system matrix [A] can
be completely described by {JA} and the following one-dimensional
integer vector:

{IC(N + 1)} ={1,5,7,10,12,13, 14, 14, 14}7 (19)
where
{IA}; ={IC}y 41 — {ICY, (20)
and the variable N1 can be conveniently computed as
N1 ={IC}y, —{IC}, 2D

The element connectivity information for the two-dimensional
truss sample problem (Fig. 1) is fully described by the element-
DOF matrix

[1 000001 0]
000100T10
10010000
11000000
10001000
00011000
[E(NE,N)]=]0 1 1 0 0 0 0 0 (22)
010071000
001 01000
00001100
001 0O0T1T00
001 00O0GO 1
(00000 1 0 1]

Eachrow of [ E] containsexactly two nonzerosbecauseeach element
has two pointsof connection,or nodes, to the structure. Thus, [ E]jy is
nonzeroonlyifnode J is anode for element /. For example, the first
row of [ E] contains a unit value only in columns 1 and 7, indicating
that the first element of the truss is connected to nodes 1 and 7 only
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(Fig. 1). The concept of an element-DOF matrix is easily extended
to ¢ DOF per node by extending each of the unity coefficients in
[E] to ag x g identity matrix.

To minimize the RAM, it is convenient to describe the element-
DOF matrix [E] by the two one-dimensional vectors

{IE(NE + 1)} = {1,3,5,7,9, 11, 13, 15, 17, 19, 21, 23, 25, 27}"
(23)
(JE(NE x NP)} =(7,1,7,4,4,1,1,2,1,5,

4,5,2,3,5,2,5,3,5,6,6,3,3,8,6,8}" (24)

and the transpose of the element-DOF matrix ([E]”) by the follow-
ing two one-dimensional vectors:

{IET(N + 1)} = {1, 5,8, 12, 15,20, 23, 25,27}" (25)
{(JET(NE x NP)} ={1,3,4,5,4,7,8,7,9,11,12,2,3,
6,5,6,8,9,10,10,11,13,1,2,12,13}7 (26)

The mainideas of algorithm 3 can be summarizedby the following
computational tasks:
1) Assume that {/E}, {JE}, {IET}, and {JET} have already been
defined from the connectivity information (see Fig. 1).
a) Compute {/C} and {JA} (symbolic assembly phase).
b) Compute {I/A} from Eq. (20).
2) Assume that vectors {{A} and {JA} have already been defined
from the symbolic assembly (task 1). Compute {AN} and {AD} from
[A®] (numerical assembly phase).

III. Sparse Algorithms for Solving
Symmetrical Equations

In this section, the major tasks involved in solving sparse sys-
tems of linear equations are briefly explained. The success of the
sparse solver is due to improved technologies (i.e., equation re-
ordering, matrix decomposition,supernodesand loop unrolling, for-
ward/backward solution phases) and bookkeeping strategies ideal
forimplementationon a digital computer. More detailedinformation
on improved technologies can be obtained from Refs. 2-14.

A. Sparse Reordering Algorithms

After imposing the boundary conditions, the modified stiffness
matrix [A] can be obtained from [A] as indicated in the discussions
before Eq. (12). Equation (12) should never be solved directly. To
further simplify the discussions, we will assume that matrix [A] has
the following numerical values:

[10 7 4 0o 5 3]
7 112 0 2 0 0
_ 4 0 66 0 0 0
[ANNI=1 0 5 0 11 1 o @7
5 0 0 1 8 0
(3 0 0 0 0 44]

Thus, in thiscase N = 6 and N 1 = 6. During the factorizationphase,
many of the zero-value terms appearing in Eq. (27) may become
nonzero. For maximum efficiency of storage and solution time, the
equations are reordered so that the number of nonzero terms that
occurduringfactorizationare minimized. These extranonzero terms
created during the factorizationof [A] are referred to as fill ins and
are denoted by the symbols F' in the following equation:

X X X 0 x X

X F X F F

i X F F F
[Ap(N,N)] = X X F (28)

X F

L X_

In Eq. (28), one has eight extra (or new) nonzero fill ins. As a result,

NF =8 (29)
N2=N1+NF=6+8=14 (30)

In general, the number of nonzerocoefficientsin the uppertriangular
partof [A] after factorization (N2) is much larger than those before
factorization (N 1).

The purposeofreorderingalgorithms [multipleminimum degrees
(MMD), nested dissection, or METIS algorithms] is to rearrange
the nonzero terms of [A], defined in Eq. (27), to different locations
so that N2 is minimized.>'"=** For example, applying the MMD
reordering algorithmto [A] will resultin the following permutation
and inverse permutation vectors:

{IP(N)} =1{5,6,3,1,4,2}7, {IV(N)} = {4,6,3,5,1,2}7
(3D

With the permutation array {/P}, the matrix [A] in Eq. (27) can be
transformed into

1m0 0 1 0 2
0 4 0 0 3 0
_ 0 0 66 0 4 0
ArNMT=10 5 9 88 5 0 (32)
0 3 4 5 110 7
(2 0 0 0 7 112]

Now, if one factorizes [A rJ), there will be only one fill in that
occurs, as follows:

X 0
X

> o o
> o O X

[Agp(N, N)] = (33)

Mo < e o
X < m o o

B. Sparse Symbolic Factorization
The reorderedmatrix [Ag] can be described by the following four
one-dimensional vectors:

{IA(N + )} ={1,3,4,5,6,7,7}7
{JAWN1)} = {4,6,5,5,5,6}7 (34)
{AD(N)} = {11, 44,66, 88, 110, 112}7
{AN(ND)} ={1,2,3,4,5,7}7 (35)

In this example, N =6 and N1 = 6. Before performing the numer-
ical factorization, it is necessary to go through the sparse symbolic
factorization, so that the following hold true:

1) The nonzero pattern of [Agr] can be determined (including
the locations of fill ins).

2) The value of N2 can be determined so that adequate com-
puter memory can be allocated for the subsequentsparse numerical
factorization phase.

On completion of the sparse symbolic factorization phase, the
nonzero patterns of [Agr] are completely known, and the modified
versions of Egs. (34) and (35) for the factored matrix [Agr] can be
computed as

{IA(IN + 1)} =(1,3,4,5,7,8,8}7
{JA(N2)} = {4,6,5,5,5,6,6}7 (36)
In this case,
N2=NI+NF=6+1=7 (37)

Efficient sparse symbolic factorization algorithms and detailed
FORTRAN coding can be found elsewhere.>>~’
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C. Finding Supernodes

To understandthe conceptof a supernode (or master node), notice
that, in Eq. (33), rows 2-3 and 4-5 have the same nonzero patterns.
That is, the nonzero terms in rows 2-3 correspond to the same
column numbers. Equation (33) can be used to define a master DOF
vector

MS(N)}=1{1,2,0,2,0,1}7 (38)

The master DOF vector {MS} is based on the assumed system matrix
[AgrF] defined in Eq. (33). Once Eq. (38) has been defined, effective
loop-unrollingtechniques”?* can be used to improve computational
speed during the sparse numerical factorization phase.

D. Sparse Numerical Factorization Phase

The strategiesemployedin this phase are quite similar to the ones
used during the sparse symbolic factorization phase and have been
well documentedin the literature3?* The reordered system matrix
[AR] can be decomposed or factorized as

[Az] = [LIIDIL]" (39)

Here, [D] is a diagonal and [£] is unit lower triangular matrix, and

[Axlyy =1
(Dl = [AR]”_E[D]KK[QK, (I=23,....N)
! (40)
(Ll =
[[A;;e]]: (I=1, J=2,....N)
[Am—i% U7l Im i

K=1

(41

E. Solution to the System Matrix Equation

The solution to the system matrix equation [Eq. (12)] is obtained
in three phases:

1) In the first phase (forward solution phase), an intermediate
solution vector {®Fr} is computed from the solution of the matrix
equation

(LY Dpr} = {Fr} (42)

2) In the second phase (backward solution phase), a vector {®gg}
is computed from the matrix equation

[DIIL] (P} = {PFF) 43)

3)In the third phase (back transformationphase), the vector {® pp}
is transformed back to the original unknown vector {®} by utilizing
the inverse permutation vector {/V}.

IV. Three-Dimensional Aeroacoustics Application

The developed algorithm will be exercised to study the propa-
gation of acoustic pressure waves in a three-dimensionalduct lined
with soundabsorbingmaterials (acousticliners) as depictedin Fig. 2.
The ductis spanned by axial coordinate z, transverse coordinate x,
and spanwise coordinatey. The source plane is locatedat z =0, and
the source plane acoustic pressure p; is assumed known. At the exit
plane, the dimensionless exit acoustic impedance ., is assumed
known. In the duct, air is flowing along the positive z axis at a sub-
sonic speed of uy, and the duct has acoustic liners along its upper,
lower, and two sidewalls. The duct walls are assumed to be locally
reacting so that the sound absorbing properties of the acoustic liners
results from the dimensionless wall impedance ¢ that is assumed
known. The sound source pressure, dimensionless exit impedance,
and dimensionless wall impedance are assumed functions of posi-
tion along their respective boundaries.

Exit plane

impedance, { ;. .

Uniform mean flow, N

A
1
]

|«—— Liner impedance, {

Source plane
pressure, p

Fig.2 Three-dimensional duct and coordinate system.

A. Mathematical Formulation

The mathematical formulation of the duct acoustics problem
(Fig. 2) does not lead to a boundary value problem that is for-
mally self-adjoint and will not lead to a symmetric system ma-
trix when airflow is considered. Thus, the analysisin the foregoing
discussion does not allow for airflow because the current paper fo-
cuses on symmetric systems. With zero airflow in the duct (u, =0),
the mathematical problem is to find the solution to Helmholtz’s
equation®

Vip+kp=0 (44)

Along the source plane of the duct (z =0), the boundary condition
is given in term of a Dirichlet boundary condition:

P =Ds (45)
The wall boundary condition is

0
W _ P

- ; (46)

At the duct termination (z = L), the ratio of acoustic pressure to the
axial component of acoustic particle velocity is proportional to the
known dimensionless exit impedance. When expressed in terms of
the acoustic pressure, this boundary condition is

)
P L

o r “7)

Equations (44-47) form a well-posed boundary value problem
for which exact solutions for the acoustic pressure field are gener-
ally not known. A solution for the acoustic pressure field satistying
this boundary value problem is required to predict and reduce the
radiated noise. An approximate solution for the acoustic pressure
field can be obtained using numerical techniques such as the finite
element method.

B. Finite Element Model

The approximate solution for the sound field in the duct is ob-
tained by subdividing the duct and representing the acoustic field
within each subdivision by relatively simple functions. Because the
duct of interest is a rectangular prism, the computational domain is
divided into a number of smaller rectangular prisms (or elements)
as shown in Fig. 3. These elements are considered interconnectedat
joints called nodes. The most widely used method for locating the
nodes in the discretizationis to divide the physical volume into NX,
NY, and NZ grid lines in the x, y, and z directions, respectively, as
shown in Fig. 3. Each node of an element can be located by iden-
tifying an ordered triplet, (x;, y,, Zx). Similarly, each element in
the assemblage can be identified by an ordered triplet of integers
(I, J, K). A typical rectangular prism element (/, J, K) is shown
in Fig. 4. Each element consists of eight local node numbers labeled
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Fig. 4 Typical three-dimensional element and local node numbering
system.

1, 2,..., 8. Each element is considered to have a dimension of 4,
w, and [ in the x, y, and z directions, respectively, as shown.

C. Element Stiffness Matrix
Galerkin’s finite element method is used to compute the element
stiffness matrix. The field error function is defined as

E, =V’p+Kkp (48)

Within each element, p is represented as a linear combination of
eight functions, Ny, N,, ..., Ng,

m=38
p= ZNmpm (49)

m=1

z B xy
(1 - 7)’ M= ma—an

s ()E)E) e
we(@0-E) -

The linear combination [Eq. (49)] comprises a complete set of basis
functions.

For a typicalelement (/, J, K), contributionsto the minimization
ofthe field error functiondueto localnode m over the computational
volume V are

/E,.Nm dV:/[V2p+k2p]Nm av (51)
|4 |4

The second derivative terms in Eq. (51) are reduced to first deriva-
tives using Green’s second identity

)
/E,.deV:/[—{V}p-{V}Nm+k2me]dV+/—me ds

v v S an
(52)

Elimination of the second derivative terms from the volume inte-
gral in Eq. (51) is required so that the linear basis functions N,,
can be used. Elimination of the second derivative terms from the
volume integral also has the advantage that all impedance boundary
conditions can be incorporated into the surface integral of Eq. (52).
This allows a choice of basis functions that do not have to satisfy
explicitly any impedance boundary conditions. The contribution to
the surface integral

9
/ PN, ds (53)
s on

is identically zero for all elements except those that lie along
an impedance boundary. Substituting the exit boundary condition
[Eq. (47)] into the surface integral in Eq. (53) gives

/a_me ds = —ik / L N, as (54)
S an S ;exit

along the exit boundary, whereas for elements that lie along the
upper, lower, and sidewalls of the duct

/a_me s = —ik/ﬁNm ds (55)
s on s &

The contribution to the minimization of the field error for each
element, when collected for each of the eight local nodes m, is
expressed in matrix form as

/ E,N,dV

|4

/ E,N,dV
|4

/ E,NydV
|4

In Eq. (56), {®/¥)} is an 8 x 1 column vector for each element
containing the unknown acoustic pressures at the eight local nodes
of the element

— [A(I.J.K)]{q>(1.!.l()} (56)

T
{0170V = {py, pa. Ps, P4 Ps. D6, P7. P} (5T

The element matrix [AY/%)] is an 8 x 8 complex symmetric
matrix for each element (/, J, K). In the special case of a hard wall
duct (¢ = 00),

il [P,
[4 ]_{[P]HB],

K #(NZ—1)

K:(NZ—I)} (58)
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Here, [P] representsthe contributionto [AY/-¥)] due to the element
volume V, whereas [ B] represents the contributionsdue to the exit
plane boundary. The matrices [P] and [ B] are symmetric, and their
coefficients have been computed explicitly:

kK2whl wl hl wh

(8 4 2 4 4 2 1 2]

4 8 42 2 4 21

2 8 41 2 4 2

4 2 48 212 4
=1y 2 1 28424

2 42 1 48 2 4

1 2422 2 8 4

(2 1 2 4 4 4 4 8]

4 2 2 —4 2 -1 =2

2 4 -4 =2 1 2 =2 -1

-2 -4 4 2 -1 =2 2

-4 -2 2 4 -2 -1 2
BI=1, 1 -2 4 2 -2 —4

2 -2 -1 2 4 -4 =2

-1 =2 2 -2 -4 4 2

|2 -1 1 2 -4 -2 2 4| (60)

4 -4 —2 2 2 -2 -1 1]

—4 2 -2 -2 2 -1

-2 2 4 -4 - 2 -2

2 -2 -4 4 1 -1 =2 2
CI1=1, 5 -1 1 4 -4 22 2 61

-2 2 -1 —4 2 -2

-1 2 -2 -2 2 4 -4

1 -1 2 2 2 -2 -4 4

[F1= (62)

-4 -2 -1 =2 4 2 1 2
-2 —4 -2 -1 2 4 2 1
-1 =2 —4 -2 1 2 4 2
|2 -1 =2 -4 2 1 2 4]
[0 000 0 0 0 O]
0000 0 O 0 O
0000 0 O 0 O
[B]:_ikw_hOOOO 0 0 0 0 6
14410 0 0 0 fi fo» f3 fu
0000 fo fs fo fi
0000 f5 fo fi fs
100 00 fi /s Sz fo

J1 = 9Bexit (1, ¥5) + 3Bexie (X1, ¥y 1)

+ Bexit (X111, Yy +1) + 3Bexic (X1, Yy 4 1)
J2 = 3Bexit (&1, ¥5) + Bexie (X1, Y 11)]

F Bexic®r 41, Yi+1) F Bexie(®1, Yy 41)

J3 = Bexie(Xr, ¥5) + Bexit (X1, ¥y +1)
+ Bexit (X741, Yo 1) + Bex (X1, Yr+1)
Ja=3Bexic(x1, y5) + Bexic (X1, Y 4+1)
+ Bexit (X115 Y1) + 3Bexic (X1, Y 41)
J5 = 3Bexit (1, Y1) + 9PBexie (X1, ¥r 1)
+3Bexic (X1 + 15 Yr+1) + Bexit (X1, Yy 41)
Jo = Bexit (X1, Y1) 4 3Bexic (X1, Y 1)
+3Bexic (X1 4+ 15 Yr+1) + Bexit (X1, Y1)
J1 = Bexie(Xr, ¥1) 4 3Bexic (X1, Yi 1)
+9Bexic (X1 4+ 1, Yr+1) + 3Bexic (X1, Ys41)
fs = Bexie (X1, ¥5) + Bexit (X1, ¥y +1)
+3[Bexit (1 415 s +1) F Bexit (X1, Y4 1)]
Jo = 3Bexit(x1, ¥5) + Bexi (X1, Y1)
+3Bexit (X1 4+ 15 Yy 1) + IBexic (X1, Yy 41) (64)

in which
ﬂexit = l/gexit (65)

V. Results and Discussion

The three-dimensionalrigid wall acoustic element has been cou-
pled with the sparse assembly and equation solver algorithms to
provide assembly and solver statistics for a three-dimensional duct
aeroacoustics application. Computations presented in this paper
were run on a single processor with double-precision(64-bit) arith-
metic on an ORIGIN 2000 computer platform. The sparse equation
solver used MMD reordering. Computations are presented for a
uniform grid and a geometry identical to that of the Langley Flow
Impedance Tube. This three-dimensional duct has a square cross
section 0.0508 m in width (W = H =0.0508 m) and 0.812 m in
length (L =0.812 m). A more detailed description of the duct is
given in Ref. 15. All calculations were performed at standard at-
mospheric conditions without flow, and the source frequency was
chosen to span the full range of frequencies currently of interest in
ductliner research. The sound was chosen as a plane wave (p; = 1),
and the dimensionlessexitimpedance was chosenas unity ({oq = 1).
This exit impedance will simulate a nonreflecting termination for
the plane wave source.

Table 1 presents CPU statistics (in seconds) for each of the three
assembly algorithms and the sparse equation solver as a function of
the source frequency f, in kilohertz. The CPU time for the solver
(column9) is that required to obtain the solution vector after the sys-
tem matrix was assembled. Note that before obtaining the solution
vector, the system matrices obtained from each assembly algorithm
were compared to each other. Each assembly algorithm assembled
the identical system matrix as expected. Also includedin Table 1 are
the number of grid lines NX, NY, and NZ and the matrix order N that
were used to perform the computations at each frequency. Here we
have used the generally accepted rule that 12 points per wavelength
isrequired to resolve a cut-on mode in each coordinate direction. To
establishthe accuracy of the solver solutions, the relative error norm
(Relerr), computed from the solver solution vector, was tabulated in
the final column of Table 1. The relative error norm? is defined as

_ {ENY* x {ENY'

Relerr = — — (66)
{(F}* x {F}T

where

{EN} = [Al{®} — {F} (67)
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Table 1 CPU time (in seconds) and error statistics for the sparse algorithms

f NX NY NZ N Algorithm 1 Algorithm2  Algorithm 3 Solver Relerr

4.00 6 6 114 4,104 49.20 0.34 0.22 6.00 6.5x 10713
7.00 12 12 200 28,800 106.80 2.50 1.75 22.80 1.8x 10712
11.00 18 18 313 101,412 1,123.80 9.05 2.28 487.80 7.5 x 10712
14.00 24 24 399 229,824 5,520.60 20.74 14.24 3,120.00 3.4 x 107!
17.00 30 30 484 435,600 19,488.00 39.78 26.94 10,440.00 3.2x 107!
21.00 36 36 599 776,304 N/A 73.81 48.35 N/A N/A

Table2 RAM statistics (in megabytes) for the sparse algorithms

f N N1 Algorithm?2  Algorithm 3 Solver
4.00 4,104 41,468 0.47 0.46 4.00
7.00 28,800 331,244 21.00 11.00 80.00
11.00 101,412 1,216,118 72.00 37.00 640.00
14.00 229,824 2,812,838 165.00 83.00 2,140.00
17.00 435,600 5,396,600 317.00 158.00 8,100.00
21.00 776,304 9,696,158 551.00 283.00 N/A

Tabularresults at 21 kHz are not presented for assembly algorithm 1
and the sparse equation solver because of the excessive CPU time
required by these two algorithms.

Although algorithm 1 is extremely simple, its performance is
extremely slow (Table 1). Note that algorithm 1 is 145 times slower
than the other two algorithms at a frequency of 4 kHz and more
than 490 times slower at 17 kHz. Tabular results also show that the
CPU time required to assemble the system matrix using algorithm 1
exceeds that required to obtain the solution vector by 9048 s (or
87%) at 17 kHz. At low frequencies, algorithm 2 is only slightly
slower than algorithm 3, but as the frequency increases to 17 kHz,
algorithm 3 is 32% faster than algorithm 2. Generally, the higher
the frequency, the better the performance of algorithm 3, relative to
that of algorithm 2. Furthermore, in using algorithm 2, the user has
to guess the maximum number of nonzero terms per row (MZ) to
allocatethe RAM for the matrix [HA]. Also, the CPU times required
to assemble the system matrix using algorithm 2 or algorithm 3 are
both more than two orders of magnitude less than the time required
to obtain the solution vector. Finally, Relerr is small, indicating that
the solver solution is accurate.

Table 2 shows the RAM (in megabytes) for algorithm 2, algo-
rithm 3, and the sparse equation solver. RAM statistics for algo-
rithm 1 were not tabulated because its performance was extremely
slow when compared to algorithm 2 and algorithm 3 (as shown in
Table 1). Values of the variables N and N 1 are also givenin Table 2.
The results show that the number of off-diagonal nonzero coeffi-
cients (N1) is an order of magnitude larger than N. Table 2 also
shows that algorithm 3 requires less memory than algorithm 2 be-
cause algorithm 2 must allocate RAM for storing vectors {/R}, {JC},
and [HA] [see Egs. (13-15)]. Note also that memory required by the
sparse equation solver is substantially larger than that required for
assembly algorithm?2 or algorithm 3. This is further verification that
most of the RAM allocated is used during matrix factorization. Pre-
liminary results from tests conducted by the authors have suggested
that the performance of the sparse equation solver may improve if
the solver were to use METIS instead of MMD reordering. For ex-
ample, at 7 kHz the number of nonzerosafter factorization(N2) was
reduced from 4,736,991 with MMD reordering to only 4,376,496
when the METIS reordering algorithm was used.

VI. Conclusions

A template for symmetric sparse equation assembly and solutions
on an unstructured grid has been presented. The accuracy and nu-
merical performance of the sparse algorithms have been evaluated
over the frequency range of interest in a three-dimensional aeroa-
cousticsapplication. Based on the results of this study, the following
conclusions are drawn:

1) Assembly algorithm 1 is impractical for system matrix assem-
bly at high values of source frequency. It requires up to 87% more
CPU time to assemble the system matrix than the sparse equation
solver requires to obtain the solution vector.

2) Assembly algorithms 2 and 3 have nearly equal performances
at low values of source frequency, but algorithm 3 gives savings
in both CPU time (32%) and RAM (50%) at the higher values of
source frequency.

3) Error norm statistics show that the sparse equation solver com-
putesaccurateacousticsolutionsoverthe frequencyrange of interest
for the three-dimensionalaeroacoustics application.

4) At high frequency (17 kHz), the sparse equationsolverrequires
low memory, but requires significant speed-up before optimization
studies (either of the duct geometry or liner material properties) are
practical. This research supports a recommendation, therefore, that
a parallel version of the sparse solver be developed. The CPU time
and RAM required by assembly algorithms2 and 3 are two orders of
magnitude smaller than that required by the sparse equation solver.
These algorithms can, therefore, be conveniently incorporated into
a substructuring (or domain decomposition) formulation (provided
that each substructure is handled by different processors) to take
advantage of parallel computation to further reduce CPU time and
RAM.
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